新东方健康网

新引力波发现 在天文有什么意义

www.xdflx.com  更新时间:  2017-11-22 03:47:00

  新引力波发现,什么是引力波,如何被发现的,引力波在天文上有什么意义?

  这是人类第五次探测到引力波。然而科学界的兴奋之情甚至不亚于第一次探测到引力波时。因为与之前被探测到的四个引力波信号不同,这次探测到的引力波信号GW170817来自1.3亿光年外两颗并合的中子星,而且科学家第一次同时观测到了引力波及其电磁对应体,以及科学家预言的巨新星现象。

  迄今最强的引力波信号

  “这是我们迄今观测到强度最强的引力波信号,比第一次观测到的双黑洞引力波信号要强得多。”LIGO科学合作组织爆发源分析组联席主席、英国格拉斯哥大学教授、北京师范大学特聘外国专家Ik Siong Heng表示,它与之前的双黑洞绕转产生的引力波信号非常类似,但持续时间更长。“探测器中GW170817信号持续时间超过1分钟,之前的双黑洞并合引力波信号只有1秒左右。”

  8月17日,LIGO与Virgo的三台探测器先后接收到引力波信号GW170817。在探测到引力波信号GW170817后的1.7秒,美国国家航空航天局(NASA)的费米卫星探测到了一个伽马射线暴GRB170817A。在之后不到11个小时之内,位于智利的Swope望远镜报告在星系NGC4993中观测到明亮的光学源。在接下来的几个星期里,无数望远镜将目光对准这片天区,记录下这一事件发生之前100秒至之后几个星期的信号。

  “最初GW170817信号到达时,LIGO位于美国路易斯安那州利文斯通的探测器数据中存在杂散噪声。根据这些噪声的特征,我们将它从分析中扣除了。”Ik Siong Heng说,此后研究人员确认在此期间没有人为的模拟信号注入,那些信号确实来自遥远的天体。

  根据这些记录,科学家复原出故事发生的过程:在距离地球1.3亿光年的长蛇座星系NGC4993中,两颗中子星互相绕转。在并合前约100秒时,它们相距400公里,每秒钟互相绕转12圈,并向外辐射引力波。它们越转越近,直至最终碰撞在一起,形成新的天体,并发出电磁辐射。

  中子星是恒星演化末期形成的一类致密天体。虽然它的半径只有十几公里,质量却与太阳相当。中子星到底有多硬?其内部物质以何种状态存在?这些一直是科学家感兴趣的问题。

  根据观测到的引力波信号,科学家估算出两颗中子星的质量、半径,并对其密度给出了保守的限制,帮助排除了那些对于中子星密度估计过低的理论模型。“引力波信号GW170817的演变,尤其是接近并合阶段的信号演变,受到中子星自身*质的影响。如果中子星更致密一点,或者更稀松一点,引力波的信号都会不同。”Ik Siong Heng说。

  引力波的探测历史

  在过去的六十年里,有许多物理学家和天文学家为证明引力波的存在做出了无数努力。其中最著名的要数引力波存在的间接实验证据——脉冲双星 PSR1913+16。1974年,美国麻省大学的物理学家家泰勒(Joseph Taylor)教授和他的学生赫尔斯(Russell Hulse)利用美国的308米射电望远镜,发现了由两颗质量大致与太阳相当的中子星组成的相互旋绕的双星系统。由于两颗中子星的其中一颗是脉冲星,利用它的精确的周期*射电脉冲信号,我们可以无比精准地知道两颗致密星体在绕其质心公转时他们轨道的半长轴以及周期。根据广义相对论,当两个致密星体近距离彼此绕旋时,该体系会产生引力辐射。辐射出的引力波带走能量,所以系统总能量会越来越少,轨道半径和周期也会变短。

  泰勒和他的同行在之后的30年时间里面对PSR1913+16做了持续观测,观测结果精确地按广义相对论所预测的那样:周期变化率为每年减少76.5微秒,半长轴每年缩短3.5米。广义相对论甚至还可以预言这个双星系统将在3亿年后合并。这是人类第一次得到引力波存在的间接证据,是对广义相对论引力理论的一项重要验证。泰勒和赫尔斯因此荣获1993年诺贝尔物理学奖。到目前为止,类似的双中子星系统只已经发现了将近10个。但是此次发布会中的双黑洞系统却从来没被发现过,是首次。

  在实验方面,第一个对直接探测引力波作伟大尝试的人是韦伯(Joseph Weber)。早在上个世纪50年代,他第一个充满远见地认识到,探测引力波并不是没有可能。从1957年到1959年,韦伯全身心投入在引力波探测方案的设计中。最终,韦伯选择了一根长2米,直径0.5米,重约1吨的圆柱形铝棒,其侧面指向引力波到来的方向。该类型探测器,被业内称为共振棒探测器:当引力波到来时,会交错挤压和拉伸铝棒两端,当引力波频率和铝棒设计频率一致时,铝棒会发生共振。贴在铝棒表面的晶片会产生相应的电压信号。共振棒探测器有很明显的局限*,比如它的共振频率是确定的,虽然我们可以通过改变共振棒的长度来调整共振频率。但是对于同一个探测器,只能探测其对应频率的引力波信号,如果引力波信号的频率不一致,那该探测器就无能为力。此外,共振棒探测器还有一个严重的局限*:引力波会产生时空畸变,探测器做的越长,引力波在该长度上的作用产生的变化量越大。韦伯的共振帮探测器只有2米,强度为1E-21的引力波在这个长度上的应变量(2E-21米)实在太小,对上世纪五六十年代的物理学家来说,探测如此之小的长度变化是几乎不可能的。虽然共振棒探测器没能最后找到引力波,但是韦伯开创了引力波实验科学的先河,在他之后,很多年轻且富有才华的物理学家投身于引力波实验科学中。

  在韦伯设计建造共振棒的同时期,有部分物理学家认识到了共振棒的局限*,然后就有了前面提到的有基于迈克尔逊干涉仪原理的引力波激光干涉仪探测方案。它是由麻省理工学院的韦斯(Rainer Weiss)以及马里布休斯实验室的佛瓦德(Robert Forward)在70年代建成。到了70年代后期,这些干涉仪已经成为共振棒探测器的重要替代者。激光干涉仪对于共振棒的优势显而易见:首先,激光干涉仪可以探测一定频率范围的引力波信号;其次,激光干涉仪的臂长可以做的很长,比如地面引力波干涉仪的臂长一般在千米的量级,远远超过共振棒。

  除过我们刚刚提到的aLIGO, 还有众多的其他引力波天文台。位于意大利比萨附近,臂长为 3千米的VIRGO;德国汉诺威臂长为600米的GEO;日本东京国家天文台臂长为300米的TAMA300。这些探测器曾在2002年至2011年期间共同进行观测,但并未探测到引力波。所以之后这些探测器就进行了重大升级,两个高新LIGO(升级版的LIGO)探测器于2015年开始作为灵敏度大幅提升的高新探测器网络中的先行者进行观测,而高新VIRGO(升级后的VIRGO)也将于2016年年底开始运行。日本的项目TAMA300进行了全面升级,将臂长增加到了3公里,改名为叫KAGRA,预计2018年运行。

  因为在地面上很容易受到干扰,所以物理学家们也在向太空进军。欧洲的空间引力波项目eLISA(演化激光干涉空间天线)。eLISA将由三个相同的探测器构成为一个边长为五百万公里的等边三角形,同样使用激光干涉法来探测引力波。此项目已经欧洲空间局通过批准,正式立项,目前处于设计阶段,计划于2034年发射运行。作为先导项目,两颗测试卫星已经于2015年12月3日发射成功,目前正在调试之中。中国的科研人员,在积极参与目前的国际合作之外之外,也在筹建自己的引力波探测项目。

  天文上的意义:

  在过去的一个世纪,因为新的观测宇宙的方法使用,天文学已经发生了改革*的变化。天文观测最初使用可见光。400多年前,伽利略最早使用望远镜进行观测。然而,可见光仅仅是电磁波谱上的一小部分,在遥远的宇宙中,并非所有的天体会在这个特别的波段产生很强的辐射,比如,更有用的信息或许可以在射电波段得到。利用射电望眼镜,天文学家们已经发现了脉冲星,类星体以及其他的一些极端天体现象,将我们对一些物理的认识推向了极限。利用伽马射线,X射线,紫外,和红外观测,我们也取得了类似的进展,让我们给天文带来了新的认识。每一个电磁波谱的打开,都会为我们带来前所未有的发现。天文学家们同样期望引力波也是如此。

  引力波有两个非常重要而且比较独特的*质。第一:不需要任何的物质存在于引力波源周围。这时就不会有电磁辐射产生。第二:引力波能够几乎不受阻挡的穿过行进途中的天体。然而,比如,来自于遥远恒星的光会被星际介质所遮挡,引力波能够不受阻碍的穿过。这两个特征允许引力波携带有更多的之前从未被观测过的天文现象信息。

主编推荐
热点排行
其他频道精选
| 设为首页 | 加入收藏 | 联系我们 | 版权申明 | 广告合作 | 网站地图 |
声明:如有来函说明本网站提供内容系本人或法人版权所有,有权先行撤除,以保护版权拥有者的权益
呼吁:拒绝不正当性行为,关爱自身健康,使用安全套,预防性病!
xdflx.CoM. 2009-2014 Copyright All Rights Reserved.
新东方健康网 (WWW.xdflx.CoM)